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ABSTRACT

Performance parameters and incipient cavitation indices are presented for
double (Vol. i) and multiple (Vol. 2) circular-arc hydrofoils tested over a
range of systematically introduced variables in a rectilinear cascade tunnel
which uses water as the test medium. Cascadeconfigurations included various
combinations of an inlet flow angle ( _IN = 50, 60, 70 and 75 deg), a cascade

solidity (_ = 0.75, 1.00 and 1.50) and angles of incidence between positive and

negative stall.

For a range of corresponding cascade variables, test results with the double

circular-arc hydrofoils indicate the probability of correlating water tunnel

cascade data with results from cascade tests wherein air was used as the test

medium, since similar trends for the test parameters are evident. Correlations

of incidence angle at the minimum loss point are in excellent agreement; correl-

ations of deviation angle at the minimum loss point indicate maximum differences

of less than three degrees.
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SUMMARY

Performance parameters and incipient cavitation indices were measured for

cascades of two families of different circular-arc type profiles: one profile

family was developed by superimposing a symmetrical double circular-arc base

profile on various circular-arc mean camber lines; the second was developed by

superimposing a symmetrical multiple circular-arc base profile on various NASA

four-digit series (M606) mean camber lines. Cascade configurations included

various combinations of an inlet flow angle ( _IN = 50, 60, 70 and 75 deg), a

cascade solidity (_= 0.75, 1.00 and 1.50) and an incidence angle between positive

and negative stall. For each configuration, measurements were obtained for pre-

senting the following performance parameters as functions of incidence angle:

total pressure loss coefficient (_), turning angle (_), deviation angle (_o),

diffusion factor (D), wake momentum thickness ratio (_*/s), cascade static pressure

rise coefficient (Ap/ql) and cavitation index (K). Results from cascade tests

with a family of double circular-arc hydrofoils are reported in Vol. i, and

results from cascade tests with a family of multiple circular-arc hydrofoils

are reported in Vol. 2.

In addition to presenting the performance of eleven different double circular-

arc hydrofoils tested in systematically varied cascade geometries, Vol. i contains

performance data for cascades of slotted 40 and 45-deg camber, double circular-arc

hydrofoils and surface pressure distributions for cascades of slotted and unslotted

40-deg camber double circular-arc hydrofoils. These cascades were tested at an

inlet flow angle of 60 deg, solidities of 0.75, 1.00 and 1.50 and a range of

incidence angles between positive and negative stall.

The incidence and deviation angles corresponding to the point of minimum total

pressure loss coefficient were correlated and are presented as functions of the

inlet angle. Summary plots in the form of carpet plots are also presented which

illustrate the variation in turning angle as a function of angle-of-attack with

the variables, inlet flow angle, cascade solidity and hydrofoil camber angle.

For each cascade configuration, the value of incidence angle for minimum total

pressure loss coefficient and the deviation angle at this incidence are compared

with the values determined from an empirical correlation which was based upon

experimental data obtained with cascades which used air as the test medium.

The test results indicate systematic changes in the performance parameters

with changes in the test geometries and also that these water cascade data may

be readily correlated with two-dimensional cascade data obtained using air as

the test medium.



INTRODUCTION

In order to meet future demandsfor high efficiency, low weight and improved
cavitation characteristics in pumping equipment, continued refinement is required
in the accuracy and range of applicability of both the experimental data and the
analytical procedures which form the basis for modernpumpdesign techniques.
For manyapplications involving high flow rates, such as in large liquid fuel
rocket engines, the above performance requirements are best satisfied by multi-
stage axial-flow pumps. At the present time, one of the more successful techniques
for the selection of blade geometries for the various radial stations in axial-
flow machinery is based upon the use of data obtained from experiments in two-
dimensional, rectilinear cascades.

A substantial amount of the cascade data, compiled by a number of inves-
tigators to support axial-flow compressor development, can be applied to pump
design. However, these data are deficient in two important respects: i) the
inlet flow angle range to which the data apply does not include all conditions
of interest in pumpdesign, for example, large inlet angles relative to the axial
direction, and 2) information relative to cavitation performance of the blade
elements is not available.

A water tunnel was designed and erected at the United Aircraft Research
Laboratories (UARL)in which cascade tests maybe performed under cavitating
and noncavitating conditions throughout a range of cascade variables. Under
Contract NAS3-4184,with the National Aeronautics and Space Administration,
certain modifications were madeto the facility to increase the degree of control
over the test section flow, and an experimental program was initiated to determine
the two-dimensional turning and loss performance and the cavitation index of a
series of double circular-arc hydrofoils which were tested with various com-
binations of flow angles relative to the cascade inlet plane, flow angles rel-
ative to the blade meanline (incidence angle) and spacings between adjacent
hydrofoils. The broad range of these test variables enabled the correlation of
a design reference point and the presentation of the test data in the form of
carpet plots which are useful for design evaluations. In addition, these data
extend the available compilation of two-dimensional cascade data to include both
other fluids and higher inlet flow angles. The data therefore provide the means
for correlating liquid and air cascade data and extending the range of fundamental
empirical data as required for blade element design of axial-flow turbomachinery.
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TESTAPPARATUS

UARLCascadeWater Tunnel

Basic Considerations _ L "'*'_ ....

In a rectilinear cascade, a linear two-dimensional array of blades is_used

to simulate the blade geometry at a discrete radial location in a three_dimensional

axial-flow machine. Measurements can then be obtained for determining the static

pressure rise, total pressure loss coefficient and flow turning angle for this

blade profile and blade spacing at various angles of incidence. By testing

cascades which simulate different radial stations, the flow characteristics through

the blade rows in an axial-flow stage may be approximated by stacking the two-

dimensional performance measurements of the blade elements.

A basic goal in the design of a cascade test section is that the flow in

the cascade test apparatus approximates the two-dimensional flow that would exist

in an infinite array of blades having infinite span. This requires that means be

proviSed in the test equipment to control wall boundary layer development and to

contour the walls confining the flow so that the interference produced by the walls

is minimized. Additional design specifications related to cascade performance

testing are that the test apparatus have the flexibility to accommodate various

cascade geometries and that the blade Reynolds number be greater than 2.5 x l0 5

to minimize the possibility of laminar separation from the blade surfaces.

%

In order to conduct cavitation tests under controlled conditions, the design

of the flow circuit must be such that: l) cavitation will occur on the test

blades before it occurs on the circuit components; 2) the system will permit

operation with test section pressures which are above and below atmospheric

pressures; 3) contamination of the test medium by solid particles, dissolved

ions and dissolved gases will be minimized, since these contaminants may become

nuclei for premature formation of cavitation. _ ......

Facility Configuration _ . -

Overall design of the water tunnel was largely dictated by the requirements

for determining cascade cavitation coefficients and avoiding cavitation elsewhere

in the test loop. The facility was therefore designed as a vertical, variable-

pressure, closed loop arranged such that the main components of the test section

are accessible from ground level. The test section is oriented such that the inlet

plane of the cascade is horizontal to eliminate hydrostatic pressure gradients

along the length of the cascade, which would otherwise affect blade cavitation

inception. In order to provide sufficient net positive suction head at the pump

!



inlets to prevent pump cavitation, the water circulating pumps are located at

the lowest point in the test loop.

A drawing of the water tunnel is shown in Fig. i. In this vertical flow

circuit, the flow is discharged from the pumps, diffused and turned in a system

of ducts and settled in a rectangular chamber containing both a honeycomb flow

straightener and graded-porosity screens for reducing large scale turbulence.

Subsequent guide vane sections provide the required flow alignment and a means for

attachment between the settling chamber and interchangeable cascade inlet nozzles.

The flow is first accelerated by the inlet nozzle, then passed through the cascade

test section and finally discharged into a large plenum tank from which the flow

completes the circuit to the circulating pumps.

The flow is accelerated to the prescribed velocity relative to the test

section by means of one of the four interchangeable nozzles which were designed

for inlet flow angles of 50, 60, 70 and 75 deg as measured relative to the axial

direction (which is normal to the cascade inlet plane). The design of the nozzles

was greatly influenced by factors related to cavitation testing. The horizontal

orientation of the cascade inlet plane required the nozzle to accelerate the flow

downward to the cascade plane from the region of low static head which is present

at the top of the inlet ducting. Therefore, the maximum vertical distance between

the blade leading edge plane and the top of the inlet ducting was limited to the

dynamic head at the test section. This insured lower static pressures at the cascade

than at the top of the ducting, thereby minimizing the possibility of cavitation

in this ducting. This dimension placed design restrictions on not only the maximum

length available for the inlet nozzle but also the maximum height of the inlet

cross section. This height, and a width which was restricted by the diameter

of the plenum tank, limited the area contraction ratios of the relatively short

inlets to 9.08, 11.4, ii.i and 14.2 for the 50, 60, 70 and 75-deg nozzles, res-

pectively. The contours for the nozzle walls were selected from an analysis of

minimum length, two-dimensional contractions for accelerating flow (Ref. i).

Installations of the 50 and 75-deg inlets with the test section assembly are shown

in Fig. 2.

The cascade test section assembly is supported from the fixed head of a lO-ft

diameter plenum tank. The plenum tank has an operating pressure range between

one and i00 psia, as required for establishing the desired cavitating or non-

cavitating test conditions, and contains windows at the sides and top for obser-

vation. Enclosing the test section assembly within a removable pressure shell

(plenum tank) affords the advantages of: i) allowing complete accessibility of

the test section when the plenum is open; 2) permitting relatively light-weight

construction of the test section assembly, since immersion of the test section

in the test fluid insures that the differential pressures acting on the test



section walls are low throughout the operating pressure range of the tunnel; 3)
minimizing the problem of air and water leakage in a test section which incorporates
both interchangeable parts and variable geometry end walls and yet operates over
a wide range of test pressures.

The three main flow pumpswere fabricated from zinc-free bronzes and stainless
steel, Eachpumpis driven by a i0 hp motor and is capable of delivering water
flows at a rate of 1700 gpmwith a heaa rise of 16 ft.

Contamination of the water used in the facility is minimized by special water
processing equipment. In addition, the facility is constructed primarily of
stainless steel to avoid solid particle shedding. Solid particles contained in
the test mediumare removedby various filters, one of which provides continuous
three-micron filtration at a flow rate of I00 gpm. Dissolved minerals are
removed from the test water by a commercial ion-exchange type demineralizer which
provides water comparable to distilled water in conductivity, a measureof
dissolved mineral content. The resistivity of the water from this unit was 106
ohmsper centimeter. Dissolved gases maybe removedby a cold-water deaerator
which can reduce the gas content to three parts per million.

Cascade Test Section

The test section (Fig. 3) was designed to establish both a uniform flow

along the cascade inlet plane and a periodic (blade-to-blade) flow downstream

of the cascade. These are necessary conditions to insure that the flow about

each blade is identical; accomplishment of these goals provides a flow which is

representative of the flow through an infinite cascade. Approximations of flow

uniformity and periodicity are achieved by removal of the wall boundary layers

and by contouring the end walls to minimize undesirable perturbation of the

mainstream flow.

The boundary layer which develops along the walls of the inlet nozzle is

removed upstream of the test section by means of step-type slots located on all four

walls of the nozzle (Fig. 3). The boundary layer flow intercepted by each of the

four step slots is ducted through individual throttling valves to a common pump.

Within the test section, porous side walls are used for removal of boundary layer

flow in the immediate vicinity of the cascade as required for the simulation of

two-dimensional flow through the cascade (Ref. 2). A porous wall assembly consists

essentially of a rectangular plenum with an interchangeable porous metal wall

which is fabricated from sintered woven wire mesh. A photograph of a porous side-

wall assembly with the blades installed is presented in Fig. 4.



Perturbations of flow streamlines (to obtain uniformity) are accomplished
by meansof variable geometry end walls located at each end of the cascade as
shownin Fig. 3. These end walls are comprised of three sections; a flexible
wall which connects the rigid inlet nozzle end wall to an adjustable end wall,
an adjustable end wall which is analogous to one surface of a cascade blade, and
a tailboard which extends downstreamfrom the adjustable end wall. Actuation of
these endwall sections enables independent adjustment of the gap between the end
blades of the cascade and the adjustable end wall, the angle of the adjustable
end wall and the angle of the tailboard. The convex, flexible end wall is porous
(Fig. 3) to permit removal of the endwall boundary layer, thereby decreasing any
tendency toward flow separation from this surface. Flow through the flexible
porous wall and each porous side wall is independently controlled.

Blade aspect ratio and the numberof blades to incorporate into a cascade
assembly are selected somewhatarbitrarily. An aspect ratio of two was chosen
as a compromisebetween the structural problem of blade bowing or bending, that
would be associated with high aspect ratio blades, and the undesirable three-
dimensional flow effects, that would occur with low aspect ratio blades. A
compromisewasalso madebetween the large numberof blades desired for simulation
of the infinite cascade and the practical considerations of cost and test section
size. Based upon general information obtained from previous experimental testing
at UARLwith a cascade tunnel which used air as the test mediumand from the
experimental evidence from NASAcascade tests (Ref. 3), it was decided to establish
five blades as the minimumnumberto be included at the greatest blade spacing
(4 in.) considered in the current test program. These considerations, together
with a specified minimumblade-chord Reynolds number of 5 x l05 and the selection
of a 3-in. blade chord, established a minimumtest section velocity of 22 ft per
second. With a 5100 gpmfacility pumpcapability, the maximumcascade inlet flow
area for each of the inlet flow angles was known. In order to remain within these
limits, a rectangular cross-section having a 6-in. span with a 24-in. length was
selected for the 50 and 60-deg inlet nozzles and a 6-in. span with a 36-in. length
was used for the 70 and 75-deg inlet nozzles.

The remaining considerations involved in selecting the test section con-
figuration were primarily associated with the desire that the facility accommodate
configuration changeswith relative ease. For this purpose, the design included
interchangeable sidewall components, to simplify changes in the blade spacing,
and remote actuators to permit adjustment of blade incidence, flexible endwall
contour and tailboard angle without the need for opening the large plenum tank.



Hydrofoil Profiles

Basic Profile

The double circular-arc profile, for which both upper and lower surfaces are

defined by circular arcs, was selected as the basic test profile, and its per-

formance therefore is being established to provide the basis against which the

performance of alternate profiles may be Judged.

The choice of the circular-arc profile was based upon its successful use at

low supersonic velocities by virtue of a capability for delaying the onset of

separation resulting from shock wave-boundary layer interaction. It was presumed

that a profile which delays shock wave formations and their adverse effects should

also delay the incidence of cavitation because both local supersonic regions and

cavitation areas are introduced similarly by the blade profile pressure distributions.

The profiles are described by the camber angle (_), which is the acute angle

formed by the intersection of tangents to the profile meanline at the leading and

trailing edges, and by the ratio of the maximum profile thickness to the chord

length. The profiles of the hydrofoils for this test program (Fig. 5) include

camber angles of O, I0, 20, 25, 30, 40 and 45 deg, with a maximum thickness ratio

of 6 percent, and camber angles of O, 20, 30 and 40 deg, with a thickness ratio

of i0 percent. Coordinates of the profiles are presented in Table I. The 3-in.

chord, 6-in. span hydrofoil blades were fabricated from stainless steel and were

polished to a surface finish of 8 microinches (rms). The leading and trailing

edge radii were 0.i0 percent of the blade chord. The blades were supported in the

test section by stub shafts welded to the blade ends at the leading edge (Fig. 4)

to simplify remote adjustment of incidence.

Static Pressure Instrumentation

Static pressure instrumentation was installed in two of the 6-percent thickness

ratio, 40-deg camber angle hydrofoils for obtaining surface pressure distributions

for a range of cascade test variables. Twelve 0.022-in. diameter orifices were

drilled in the suction surface of one hydrofoil and 12 also in the pressure surface

of the other hydrofoil at the locations shown in Fig. 6. Pressure was led out by

means of stainless steel tubing laid in grooves milled into both the blade surface

opposite the instrumented surface and along one of the stub shafts. The grooves

were filled with an epoxy cement, and the surface was refinished to the original

contour. Instrumented hydrofoils are shown in Fig. 7.

Slotted Hydrofoils

Both 40 and 45-deg camber hydrofoils were slotted to the configuration shown

in Fig. 8; a slotted hydrofoil is shown in Fig. 9. The slot meanline penetrated



the s_ction surface at the 35-percent chord station and had an inclination of 31
deg relative to the blade chord line. The slot was tapered 8 deg and had a dis-
charge height, normal to the slot meanline, of 0.0625 in. Webs, 0.140-in. wide
at the 0 and i00 percent span stations and 0.063-in. wide at the 33.3 and 66.7
percent span stations, were retained to provide structural rigidity in the slotted
hydrofoils. Static pressure taps were also installed in two of the 40-deg camber
slotted hydrofoils at the locations shownin Fig. 6. Due to the location of the
slot, static tap Number4 on the suction surface and static tap Number5 on the
pressure surface were necessarily omitted. Locations of the pressure taps relative
to the slot maybe determined from Figs. 6 and 8. It maybe noted from Fig. 8 that
two static pressure taps are located within the slot.

Instrumentation

The performance of a cascade of hydrofoils was determined from static and
total pressures and flow directions measuredboth upstream and downstreamof the
cascade. Static pressures were measuredby meansof sidewall orifices which were
spaced at one inch intervals along the length of the cascade. This arrangement
of orifices provided an indication of the degree of uniformity of both the inlet
and exit flows and therefore was useful for adjusting test section flow conditions
as well as for indicating the cascade static pressure rise. Total pressures and
flow angles were measuredby meansof the two-dimensional, directional probes
shownin Fig. lO; these probes were capable of measuring flow angle to an accuracy
Of _1/4 deg. The designation "wedge" refers to the probe cross section at the
hole location. The probes were remotely positioned in the spanwise direction.
The upstream probe and the upstream static pressure orifices were located in a
plane which was 0.6 chord length (axially) upstream of the plane of leading edges.
The axial position of the downstreamprobe traversing plane was varied so that
the streamwise distance between the blade trailing edge plane and the probe was
between one and two chord lengths for all cascade configurations.

An automatic data acquisition system (Fig. ll), which was used to record
cascade performance data, stored the data on paper tape. The tape-stored data
were processed by a high-speed digital computer. The data recorded from the
upstream and downstreammeasurementstations included total pressures and flow
angles, which were continuously acquired during traverses of the probes, and the
local wall static pressures along the length of the cascade. The pressures and
flow angles were also visually displayed during testing, using strip chart
recorders for readout of probe traverse data and both a multi-tube mercury manometer
and an x-y plotter for indication of the individual wall static pressures.

Each of the inlet flow nozzles was provided with a window in the upper wall,
aligned with the window at the top of the plenum tank, through which the central
portion of the cascade could be observed and photographed during cavitation tests.

9



For visual detection of cavitation, the test section was illuminated from strobe
lights which also provided the short duration, high intensity illumination required
for cavitation photographs.

PROCEDURES

Test Program

This program was established to determine, experimentally, the performance,
over a range of incidence angles, of a family of double circular-arc profiles
With various inlet flow angles and cascade solidities. Incidence angle is defined
as the difference between the inlet flow angle and the tangent to the meanline at
the leading edge of a hydrofoil. For the double circular-arc profile, the incidence
angle (i) is related to angle-of-attack (_), which is a reference angle used by
many investigators (e.g., Refs. 2 and 3), through the expression

i=o_- 6/2

The broad range of test variables included in this investigation enables

the correlation of this experimental data throughout regions of interest to both

axial-flow pump and compressor designers. The test configurations, which consisted

of various combinations of inlet flow angles (_IN = 50, 60, 70 and 75 deg) and

cascade solidities (_= 0.75, 1.00 and 1.50) with the double circular-arc hydro-

foils shown in Fig. 5, are presented in Table II. The 50 and 60-deg inlet flow

angles are in the range of cascade tests which were conducted for the development

of axial-flow compressors and therefore provide a means for comparing and correlating

these water cascade data with cascade data obtained from other test programs where

air was used as the test medium. The 70 and 75-deg inlet flow angles are in the

range of interest for pump design and are also of importance for extrapolating the

correlations of compressor cascade data to these higher inlet flow angles.

Each of the cascade configurations, represented by a particular profile

shape, inlet flow angle and cascade solidity, was tested over an incidence range

which included the points of positive and negative stall, where stall is defined

as the point at which the total pressure loss coefficient is double the minimum

value.

i0



Test Procedure

The test procedure for each set of cascade hydrofoils involved extensive
iterative adjustments of the various flow control devices to achieve the best
approximation to the desired two-dimensional flow in the cascade. At the start
of this procedure, the hydrofoils were set at an angle estimated to be close to
the incidence angle corresponding to the point of blade minimumtotal pressure loss
coefficient. The flow velocity was then adjusted to provide a Reynolds number
(Rec) based upon the chord length of approximately 5 x 105. The results from
various cascade tests (e.g., Refs. 2 and 3) indicated that this value of Re c
was well above the critical Reynolds number range. Therefore, extensive laminar

separation from the hydrofoil surfaces was unlikely and the effects of Reynolds

number on the cascade performance parameters was expected to be minor. The

endwall geometries and boundary layer control flow rates were then progressively

adjusted to produce uniform distributions of inlet and exit wall static pressures

and inlet flow angles along the full length of the cascade.

After a relatively uniform inlet distribution was obtained (inlet flow angle

constant to within +0.8 deg of the value at the center of the cascade), the dis-

tributions of exit flow angle and total pressure were examined in the same manner;

the porous endwall flow rate and tailboard settings were adjusted accordingly

to improve periodicity of the exit flow. A calculation was then made to determine

if the dynamic pressure ratio across the cascade was within +__0.05 of the value

computed from an approximation of the two-dimensional continuity equation which is

defined by:

[,(COS_ 2
20 (I)

where:

I of' AP

(2)

These terms are defined in Appendix I.
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Equation (I) was used to estimate the adjustments required to control the
sidewall boundary layer thickness, thereby eliminating spanwise divergence or
convergence of the streamlines and producing effective two-dimensional flow.
If required, an appropriate change in sidewall flow rate was made, and the inlet
flow was resurveyed since changes in blade loading affect the inlet flow field.
An iterative procedure for evaluating and modifying upstream and downstreamflow
fields was thus established. A minimumof three complete iteration cycles was
required for the first test of a cascade configuration before both upstream and
downstreamflow fields were acceptably uniform or before it had becomeobvious
that significant improvement in flow uniformity could not be obtained. The time
required for the iteration procedure varied from a minimumof approximately three
hours to a maximumof about eight hours.

After obtaining the data for an initial test point of a configuration,
subsequent test points were established by changing the blade-chord angle in
approximately 2-deg increments until an incidence range was covered which included
minimumloss incidence and values of incidence corresponding to twice the minimum
loss. Each additional test point required an iterative procedure of flow adjust-
ment identical to that described for the initial test point except that only one
iteration was generally required. Approximately two hours were required to
establish the flow uniformity and obtain the data for each additional test point.

A great variation in flow removal was required for cascade boundary layer
control throughout the extremes of incidence angle between positive and negative
stall. During tests of high camberedhydrofoils at incidence angles approaching
positive stall, the porous wall boundary layer control system was required to
remove a substantial portion of the mainstream flow to achieve two-dimensional
flow conditions. Under conditions of severe separation or in the range of the
highest static pressure ratios, the two-dimensional condition could not always
be achieved even though maximumflow was being removedby the porous wall boundary
layer control system.

During tests of low camberedhydrofoils at incidence angles approaching
negative stall, the boundary layer control system was required to remove only
a small portion of the mainstream flow to achieve two-dimensionality. For some
low static pressure ratio conditions, two-dimensionality was often achieved
without use of the porous wall boundary layer control system. Extreme low static
pressure ratio conditions were encountered when it was impossible to achieve two-
dimensional flow even though this boundary layer control system was not utilized.

Although someof the test conditions near positive and negative stall
incidence were not two-dimensional, test points were obtained in this region in
order to provide data which are useful for achieving a reasonably meaningful
extrapolation of the two-dimensional data. Someof the data in the low loss
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regions are reported as being non two-dimensional. These test points were however
determined to be two-dimensional within the required limits through a comparison
of a hand computation of the experimental q2/ql ratio with the theoretical value
at the time the tests were conducted. Subsequent computer computation using the
tape-stored data resulted in a difference between the experimental and theoretical
values of q2/qI which exceeded the allowable value of +0.05, but only slightly.
Nonetheless, these values are reported as non two-dimensional data. It should
be noted that even the data points near stall were generally within a few percentage
points of being classified "two-dimensional" as defined in this report.

Before conducting cavitation tests, the water was deaerated for a minimum
of six hours either by using the deaerator system or by reducing the pressure
in the plenum tank. The cavitation index was determined from the point of cav-
itation desinence by first reducing the test section pressure until fully developed
cavitation was established along the cascade and then gradually increasing the
pressure until the cavitation disappeared (cavitation desinence). At this point
the absolute pressure, dynamic pressure and temperature in the free stream were
recorded for calculation of the cavitation index. A minimumof two hours was
required for the cavitation measurements.

Data Reduction Procedure

The measurementsof cascade static pressures, total pressures and flow angles
were stored on paper tape by the data acquisition system (Fig. ll) and were later
converted to cascade performance parameters by a computer program. This program
computedand tabulated the flow angle and wall static pressure distributiens along
the entire cascade and also the hydrofoil yake parameters for each wake traversed.
The equations and methods used in calculating the cascade performance parameters
are outlined in Appendix I; the significance of the various terms in these expres-
sions maybe determined by reference to Fig. 12 which is a schematic presentation
of cascade nomenclature. The computeddistributions of pressure and flow angle were
then examined to determine the uniformity and periodicity of the flow for the
particular test configuration. In addition, the pressure and flow angle distrib-
utions over the two central gaps of the cascade were averaged to give representative
values for inlet and exit flow angles, total pressure loss, momentumthickness
ratio and inlet and exit static pressures. The diffusion factors and deviation
angles for each cascade configuration were determined from the averaged inlet and
exit flow angles.

The nondimensional cavitation index, K, was calculated from the inlet static
pressure (pl) at which cavitation had just disappeared from the hydrofoil surfaces
and the vapor pressure of the water (pv) at the test temperature using the
expression:
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K

P_ -Pv

ql (3)

PRESENTATION OF RESULTS

Prior to conducting the systematic cascade tests, a comprehensive evaluation

of the flow uniformity and periodicity in the tunnel was made with a cascade con-

figuration consisting of lO-deg camber angle, 6-percent thickness ratio, double

circular-arc hydrofoils arranged for a solidity of 1.0. The 75-deg inlet nozzle

was used in these tests to evaluate the tunnel performance under one of the more

difficult of the test conditions, since nonuniformities of the flow in the cascade

tunnel were anticipated to be more severe at the highest inlet angle (Ref. 3).

Typical cascade test results obtained during these experiments are shown in Figs.

13 and 14 for incidence angles of -4 and one deg, respectively. These figures

present wall static pressure coefficient and midspan flow angle distributions,

which were measured upstream and downstream of the cascade, and total pressure

loss coefficients, which were calculated for the individual hydrofoils by inte-

grating the midspan wake total pressure deficit for each hydrofoil over one gap.

The exit flow angles were calculated by averaging the incremental values of flow

angle measured in the wake-free regions of the exit flow. A measure of the degree

to which the two-dimensional pressure rise was achieved in the actual cascade is

indicated for each test condition by the relative values of the "two-dimensional"

[(q2/ql)2D ] and experimental [(q2/ql)E] dynamic pressure ratios. The "two-

dimensional" dynamic pressure ratio was calculated from the two-dimensional

continuity equation (Eq. i) using values of inlet and exit angle and total pressure

loss coefficient measured for the two hydrofoils nearest to the center of the

cascade. Figure 14 also includes the pressure and flow angle distributions

measured at two alternate stations which were i and 2 in. from the side wall.

For each of the test configurations, the characteristics of the performance

parameters are presented as functions of the incidence in Figs. 15 through Ii0;

the order of presentation is shown in Table II. Inlet flow angles for the

cascade tests were determined from flow surveys along the length of the cascade

at the upstream measuring station. The average angles from the flow surveys were

slightly different from the nozzle angles and are therefore presented for each

test point together with the presentations of cascade performance parameters in

Figs. 15 through ii0. Results from tests with the slotted hydrofoils are presented

with the results from the corresponding unslotted hydrofoil tests in Figs. 60

through 62 ( ¢ = 40 deg) and 66 through 68 ( @ = 45 deg).
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Pressure distributions for the unslotted and slotted 40-deg camber, 6-percent
thickness ratio hydrofoils at various incidence angles are presented in Figs. lll
and ll2, respectively, for solidities of 0.75, 1.00 and 1.50; the inlet nozzle
angle for these data was 60 deg.

Cavitation in the cascade water tunnel was photographed for a cascade of 20-
deg camber angle, 10-percent thickness ratio, double circular-arc hydrofoils
installed with a solidity of 1.50. Photographs of cavitation for incidence
angles of 5.1 and 2 deg are shownin Figs. ll3 and ll4 (one-half of the center
hydrofoil had been blackened to comparesurface contrasts as an aid to cavitation
visualization). Figure ll4 (i = 2 deg) shows a time varying cavitation pattern

caused by nonuniform inlet conditions. The cavitation shown propagated to the

right (downstream) at approximately l0 ft/sec. When the inlet flow nonuniformity

was less severe as in Fig. ll3, the cavitation did not propagate and the bubble

size changed simultaneously on all hydrofoils.

A convenient reference point which may be used as the basis for developing

empirical cascade performance prediction systems is the incidence angle at which

minimum loss occurs. Using the minimum total pressure loss coefficient as a

reference, these test data were correlated in a manner similar to that which was

used for determining the correlation presented in Ref. 4. For the correlation

of the double circular-arc hydrofoil data, the variable, minimum loss incidence

angle or deviation angle, for a given cascade configuration is assumed to be a

linear function of the minimum loss incidence (or deviation) for the zero degree

camber hydrofoil and a correction term related to the camber angle. In equation

form, these reference angles may be expressed as

i = iO + n_

and

8 ° =8 ° + m 6
@

o
where io and 8. are the values for the zero degree camber hydrofoil and n and m

are the respective rates of change of incidence and deviation with camber angle.
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The minimum loss incidence angles for zero degree camber hydrofoils (ie) and

slope factors (n) are presented as functions of inlet angle in Figs. 115 and 116;

the minimum loss deviation angles for zero degree camber hydrofoils (8_) and slope

factors (m) are presented as functions of inlet angle in Figs. 117 and 118.

Figure 119 presents the reference incidence and deviation obtained from the water

cascade data correlation and the reference incidence and deviation developed from

an empirically derived correlation of data from cascade tests wherein air was

used as the test medium (Ref. 4). Typical values of minimum loss incidence and

deviation obtained from the cascade water tunnel tests are also presented in

Fig. 119.

Correlation of the turning angle data is presented in the form of carpet

plots (Ref. 5) in Fig. 120. This manner of presentation facilitates interpolation

of turning angle data for arbitrary cascades of the double circular-arc profiles.

DISCUSSION

Flow Distributions

Re flow distribution data (Figs. 13 and 14) show that the inlet flow was

uniform along the cascade, with respect to the measured sidewall static pressure

distribution, to within one blade gap of the end walls and that the inlet flow

angles for the five central hydrofoils varied by less than ±0.5 deg from the value

at the center of the cascade. Exit angles were generally within ±0.8 deg of the

exit flow angle from the centermost hydrofoil (blade No. 6). Blade-to-blade

variations of total pressure loss coefficient generally occurred in a nonsystematic

manner; that is, these variations could not be simply correlated with differences

in the individual hydrofoil loadings resulting from variations in either blade

angle setting (±1/4 deg) or inlet flow angle.

Cascade Performance

Examination and comparison of the cascade performance data (Figs. 15 through

ii0) reveal behavior characteristics or limiting values of the various cascade

performance parameters which are noted in the following discussions.

Total Pressure Loss Coefficient

Evaluation of the curves of total pressure loss coefficient versus incidence

angle indicated a general trend for the minimum value of total pressure loss
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coeff%cient to increase with increasing camber, solidity and inlet flow angle. The

hydrofoil operating range, as defined by the incidence angles where the total

pressure loss coefficient is double the minimum value, generally decreased with

increasing camber, solidity and inlet flow angle. The hydrofoil thickness ratio

(6 and l0 percent) did not affect the total pressure loss coefficients to a sig-

nificant degree with respect to either the minimum loss value or the operating

range. Minimum total pressure loss coefficients for the slotted hydrofoils were

significantly greate_ than those for the unslotted hydrofoils and, except for

= 45 with _= 1.50 (Fig. 68), occurred at higher incidence angles.

Turning An61e

The turning angles for the low cambered hydrofoils (@ = 0 and i0 deg)

increased linearly with incidence angle for all solidities and inlet flow angles;

for a given hydrofoil profile, the slope of the turning angle versus incidence

angle curve increased with increasing solidity but was relatively unchanged with

increasing inlet flow angle. The slopes of the turning angle versus incidence

angle curves for the higher cambered hydrofoils decreased with incidence angle

as either solidity or inlet flow angle was increased. With the exception of the

slotted hydrofoils, a point of maximum turning angle was realized for at least

one hydrofoil profile with each inlet nozzle; beyond this point the turning angle

was either constant or else decreased within the test range. Except for the

solidity of 0.75, turning angles for the 40 and 45-deg camber slotted hydrofoils

did not exhibit a region where a pronounced decrease in slope occurred with

increasing incidence angle, a characteristic of the unslotted hydrofoils; turning

increased throughout the incidence angle range at solidities of both 1.00 and

1.50 (Figs. 61 and 62, @= 40 deg and Figs. 67 and 68, @= 45 deg).

Diffusion Factor

For the unslotted hydrofoils, the range of test variables resulted in

diffusion factors as high as 0.60, as shown in Figs. 67, 68, 104, 109 and llO.

This value of the diffusion factor is indicated in Ref. 6 to be the point beyond

which momentum thickness, and therefore total pressure losses, will increase

rapidly because of flow separation. Unfortunately, the test range of this program

was not adequate to substantiate this trend with diffusion factor. At the minimum

loss point, the diffusion factors for the 40 and 45-deg camber unslotted hydrofoils

were generally between 0.45 and 0.60 and the minimum total pressure loss coefficients

were between 0.016 and 0.025, indicating a gradual loss increase with diffusion

factor. Diffusion factors for the highly cambered hydrofoils, when operated at

incidence angles greater than that for minimum loss coefficient, attained maximum

values in a manner similar to that shown by the characteristics of the pressure

rise coefficients. This does not detract from the usefulness of the diffusion

factor as a loading parameter since the diffusion factor was developed specifically
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for evaluation of conditions relative to the region of minimumloss. At the
incidence angle for minimumtotal pressure loss coefficient, the diffusion factors
for the slotted hydrofoils were between 0.45 and 0.55; at higher incidence angles
the diffusion factors were greater than 0.60.

Wake Momentum Thickness Ratio

For cascades of both slotted and unslotted hydrofoils, the variations of

wake momentum thickness ratio with the cascade geometry were similar to the

variations of total pressure loss coefficient. For cascades of low camber hydro-

foils, the rate of increase of wake momentum thickness ratio was not as great as

the rate of increase in loss coefficient at incidence angles approaching negative

stall.

Static Pressure Rise Coefficient

The wide range of test variables resulted in static pressure rise coefficients

greater than 0.60 for some of the configurations as shown for example in Figs. 68,

107 and ii0. For the unslotted hydrofoils, values of _ P/ql above 0.50 were

generally associated with the initiation of a decrease in the slope of the turning

angle curve; the value of _ P/ql' at which the slope started to decrease, increased

with increasing cascade solidity. The maximum values of _p/ql obtained from the

slotted hydrofoils were not substantially different from the values obtained for

the unslotted hydrofoils.

Hydrofoil Pressure Distributions

The pressure distributions along the surfaces of unslotted and slotted hydro-

foils are presented for a range of incidence angle for the 40-deg camber, 6-percent

thickness ratio hydrofoils installed at solidities of 0.75, 1.00 and 1.50 with the

60-deg inlet nozzle (Figs. iii and 112, respectively). With increasing incidence

angle, the unslotted hydrofoil pressure distributions show forward shifts of the

minimum pressure point on the suction surface: the most rearward position was

the 50-percent chord station, occurring at a solidity of 0.75 (Fig. llla); the

most forward position was the 18-percent chord station, occurring at a solidity

of 1.50(Fig. lllc). A change in the boundary layer characteristics on the suction

surface, as indicated by a sharp increase in local pressure near the trailing edge,

appears at incidence angles of -12 deg (o= 0.75), -8 deg (_= 1.00) and -8 deg

(_= 1.50); separation along the suction surface, as indicated by a region of

relatively constant pressure near the trailing edge and increasing minimum pressure

peak, appears at the higher incidence angles.
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The slotted hydrofoil pressure distributions show minimum pressure points at

about the B0-percent chord location for incidence angles greater than -8 deg and

at about the 40-percent chord location for incidence angles of -8 deg and less,

at all solidities. Separation along the suction surfaces apparently occurred

at incidence angles greater than 0 deg, as evidenced by the increasing local static

pressures starting at the minimum pressure point.

Cavitation Index

The cavitation indices presented represent the highest pressures at which

cavitation could be observed on the hydrofoils. Because of the required low

operating pressures, cavitation, when occurring on the hydrofoils, also occurred

within the boundary layer control systems reducing their effectiveness in main-

taining two-dimensional flows. As a result, the inlet flow distributions were

often nonuniform, and cavitation was most prevalent from both the surface of the

porous, flexible, convex end wall and the adjacent hydrofoil. However, cavitation

did appear uniformly on the hydrofoils further from the porous, flexible, convex

end wall, and the cavitation indices were obtained from observations on the

surfaces of these hydrofoils.

Because of the use of the porous sidewall boundary layer control system,

viewing of cavitation was possible only from above or below the cascade and this

created some special problems. Adequate illumination and viewing could not always

be achieved for the cavitation studies, especially when testing the highly cambered

hydrofoils at a solidity of 1.50. The more difficult problem was that of attempting

to determine cavitation deslnence on the pressure surfaces of a hydrofoil while

observing through the cavitation bubbles swept from the porous end wall and the

leading adjacent blade. This uncertainty of the presence of cavitation made

impractical the measurement of cavitation from the pressure surfaces of the hydro-

foils, and the results presented therefore generally represent suction surface

cavitation.

When testing the low camber hydrofoils, cavitation in the nozzle or from

the suction slots of the boundary layer control system was often detected before

cavitation was observed along the hydrofoil surfaces. When these conditions

occurred, the test data were invalid and additional tests were conducted at higher

incidence angles where cavitation occurred at higher pressures in an attempt to

generate curves of cavitation test data for the hydrofoils.
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DATACORRELATIONANDCOMPARISON

MinimumLoss

The comparison of minimumloss incidence angles as determined from the double
circular-arc (DCA)hydrofoils and the Ref. 4 correlations, which are presented
in Fig. 119, shows that the incidence variations with camber and solidity are
quite similar for the two correlation systems. For the two correlations, the
values of minimumloss incidence for each solidity differ by less than one degree
at @= 0. At BI N of 50 and 60 deg, the slopes of the incidence curves are more
negative for the DCAcorrelation; at BI N = 70 deg, the slopes are nearly identical;
at BIN = 75 deg, the slopes of the curves are less negative for the DCAcorrelation.

The values of minimumloss incidence indicated on Fig. 119 by the open symbols
were obtained from the performance curves (Figs. 15 through ii0) to showthe fit
of the experimental data with the correlations. It is evident that these results
agree very closely with the DCAcorrelation.

The comparison of minimumloss deviation angles (Fig. 119) shows that similar
trends of the deviation angle variation with camber and solidity are obtained
from the two correlations. The DCAcorrelation results in generally higher
deviation angles from low camberhydrofoils for all four inlet flow angles. Com-
paring these results from the two correlation systems showsthat the greatest
difference in the values of minimumloss deviation throughout the range presented
by the correlations is on the order of 2 1/2 deg. The values of minimumloss
deviation obtained from the performance curves also indicate a reasonable fit
with the DCAcorrelation.

Carpet Plot

The cascade data are summarizedusing a carpet plotting technique (Ref. 5).
This technique presents a function of several independent variables on a single
two-dimensional graph. This graphic presentation facilitates the selection of
a blade camberangle and angle-of-attack which will provide the turning angle
specified by a design velocity vector diagram. Within the range of the test
parameters, the carpet plots which are presented in Fig. 120 maybe used to
predict the turning angle and angle-of-attack for arbitrary cascade geometries
which incorporate various combinations of camber angle, inlet flow angle and
solidity. The carpet plotted data comprise a range of camber angles from 0 to
45 deg, inlet angles of 50, 60, 70 and 75 deg and solidities of 0.75, 1.00 and
1.50.
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This plotting technique features an abscissa scale with a shifting origin.
The origin was shifted in the x direction by an amount proportional to the increment
of the variable represented. In this case, each carpet plot is separated from
the next by a numberof units proportional to the difference in camber. In order
to avoid overlapping of the carpets, the ordinate scale was shifted vertically a
numberof units proportional to the solidity. For solidities above 0.75, turning
(8) is given by the following expression:

= R- 32 o.75)

where R is the actual ordinate scale on the carpet plot.

Each of the individual plots on Fig. 120 presents turning angle, angle-of-

attack and inlet flow angle for a prescribed solidity and camber angle. For a

given solidity, similar carpet plots, or a portion of a carpet plot, maybe con-

structed for intermediate camber angles by linear interpol&tion between corres-

ponding values of _ and _l on the given carpet plots for higher and lower camber

angles. The individual carpet plots representing increasing camber angle were

separated such that four units in the horizontal direction represent one degree

of camber.

In a similar manner, carpet plots, or a portion of a carpet plot, may be

constructed for an intermediate solidity by linear interpolation between corres-

ponding values of _ and _l on carpet plots which differ in solidity but have

the same camber angle. For this interpolation, 16 units represent a change in

solidity of 0.25. A double interpolation is required for plots involving both

intermediate camber angles and solidities.

Pressure Distributions

At incidence angles of -12 and -10 deg and a solidity of 0.75, the pressure

distributions for slotted (Fig. ll2) and unslotted (Fig. lll) hydrofoils indicate

that the minimum pressure coefficients on the suction surface of the slotted

hydrofoils were slightly more negative but occurred at the same chordal station

as those for the unslotted hydrofoil configurations.

At a solidity of 1.00, the pressure distributions for slotted and unslotted

hydrofoils for incidence angles of -6, -4 and -2 deg indicate no appreciable

difference in either the magnitude or the location of the suction surface pressure

peaks which occur between the 35 and 40-percent chord stations. For incidence

angles of -12, -10 and -8 deg, the pressure distributions for slotted and unslotted
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hydrofoils indicate lower pressures at the 35-percent chord station on the suction
surface of the slotted blades and also appreciable differences in the pressure
distributions along the entire pressure surfaces.

For a solidity of 1.50, the pressure distributions indicate lower pressures
on the pressure surface of the slotted hydrofoils to about the 25-percent chord
station at all incidence angles. For incidence angles of -5, -3 and -2 deg, the
minimumpressures on the suction surface of the slotted hydrofoils were lower
than those along the unslotted hydrofoils. The minimumpressure peaks on the
slotted hydrofoils occurred downstreamof the 30-percent chord station for all
incidence angles; the minimumpressure peaks on the unslotted hydrofoils occurred
upstream of the 30-percent chord station for incidence angles greater than -7 deg.

CONCLUDINGREMARKS

A program was completed in a cascade water tunnel for which a family of
double circular-arc hydrofoils was tested over a range of incidence angles with
a systematic variation in the inlet flow angle and cascade solidity. The test
range included inlet flow angles which are of interest for the design of both
axial-flow pumpsand compressors, and the test measurementsincluded the deter-
mination of cavitation points in addition to those required for calculating
the cascade performance parameters.

The turning angle data were correlated by the carpet plotting technique
which permits the determination of turning angle for arbitrary cascades of double
circular-arc hydrofoils by meansof interpolations within the limits of the test
variables. The carpet plots indicate an orderly progression of the turning angle
as has been previously reported for cascade tests in which air was used as the
test medium. _le test data were further summarizedand evaluated by correlating
the incidence angles and deviation angles for the points of minimumtotal pressure
loss coefficient and comparing the results with a set of curves developed from
an empirical correlation of cascade data using air as the test medium. The dif-
ferences between the two correlations are primarily in the slopes of the curves
and suggest changes in the assumptions or terms of the expressions which were used
to adapt the air-data correlation to the double circular-arc profile. The reason-
able agreementbetween these correlations of air and water cascade data suggest
confidence in employing air cascade data and correlations for the design of
axial-flow pumpsfor noncavitating flows.

Results from the slotted hydrofoil tests were well below expectations with

respect to the cascade operating range, minimum total pressure loss coefficient

and turning angle. With the exception of the results for _= 0.75, the data
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indicate that slots did not increase the positive-stall incidence angle range; the
negative-stall incidence angle range was decreased for all test configurations.
Although the incidence angles for minimumtotal pressure loss coefficient were
greater for the slotted hydrofoils (except for _= 45, _ = 1.50), this did not
result in improved performance at _= 1.00 and 1.50 because the corresponding loss
coefficients were so high. Reasons for the poor performance are most likely
related to slot geometry rather than slot location along the chord. Fromprofile
pressure distribution measurementsof unslotted hydrofoils, the chordwise position
of the slot on the suction surface was established to lie within a region down-
stream of the minimumpressure point but upstream of the indicated separation
region. This region provided both the pressure difference necessary to induce
flow through the slot and a slot position where the momentumof the fluid ejected
from the slot could be used to reinforce an attached boundary layer rather than
attempt to re-establish an already separated boundary layer. The slot performance
could possibly be improved by making the following changes to the slot profile
along the downstreamsurface of the slot: (1) increase the radius of the 0.020 r
corner at the pressure surface, (2) increase the radius of the 0.200 r corner at
the suction surface. These modifications would reduce the probability of flow
separation from the slot lip on the pressure surface (as indicated by the reduced
operating range toward negative stall) and improve the probability of a Coanda-
type flow of the fluid ejected from the slot along the suction surface.

The data presented are ad@quatefor the determination of systems for predicting
the oerformance of double circular-arc profiles in cascades or for determining
terms for correcting current prediction systems (for other profiles) to include
the double circular-arc profile. In addition, an operating range correlation may
also be established within the limits of positive and negative stall, which are
defined herein as the angles at which the total pressure loss coefficient is double
the minimumvalue. Although this definition for the operating range is a useful
criteria for Judging the relative merits of arbitrary profiles in cascades, it
is too restrictive and another criteria such as 0.04 plus the minimumtotal pressure
loss coefficient would be useful for defining the maximumoperating range of
various profiles, especially for those which have a very low minimumtotal pressure
loss coefficient or a shallow total pressure loss coefficient characteristic.
This extended range was not included in this experimental program because of the
two-dimensionality specification for the test data which would be difficult to
achieve in the high-loss test regions. Whether or not this two-dimensionality
can be achieved, a test program with a limited number of cascades is recommended
to measure cascade performance at incidence angles both higher and lower than
those reported and therefore to define the maximumoperating limits of the cascades.
In spite of the fact that the test conditions may not be two-dimensional, the data
points will provide someoptimism in extrapolating current test data for empirical
correlations of operating range.
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A need is indicated to test, in a systematic manner, cascades with diffusion
factors and static pressure rise coefficients greater than 0.6 to further qualify
the cascade loading limit definitions. These tests should explore: (i) the
effects of Reynolds number, tunnel turbulence level and blade surface finish on
laminar separation and therefore the consequent effects on cascade performance,
(2) the use of boundary layer trips or surface roughness for overcoming laminar
separation, and (3) the use of slots at the tip regions of hydrofoils for the
purpose of reducing stall at the cascade side walls and therefore increasing
the cascade operating range. Static pressure measurementsat various spanwise
stations across the blades should be obtained for a discrete numberof these tests
for evaluating the effects of the test variables on the pressure profiles.

The cavitation tests revealed a necessity for further effort in defining the
cavitation index throughout the cascade operating range. The tests require obser-
vations from both above the suction surface and through the side walls, along
the span of the hydrofoils, in order to determine the cavitation indices for
both suction and pressure surfaces. Although cavitation is most prevalent at
stations along the suction surface, it may also occur on the pressure surface
under conditions approaching negative stall. Observation of cavitation through
the side walls will prevent the use of a porous wall boundary layer control
system, with consequent effects of the boundary layer on the cavitation index.
Therefore, a series of tests in which cavitation maybe observed from above the
suction surface should be conducted with and without boundary layer control
thereby establishing a correction term for the cavitation indices measured in
non two-dimensional flow.
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APPENDIX I

Equations for Data Reduction

For the acquisition of data, the test procedures were established to: (i)

exclude turning angle measurements within the wake regions, (2) measure flow

angles and total pressures only at the midspan position, and (3) adjust the flow

conditions to provide effective two-dimensional flow through the cascade. An

expression based upon the continuity equation was derived for determining the

two-dimensional dynamic pressure ratio to provide a reference for estimating

the two-dimensionality of the test data. This expression,

+ (i)

is an approximation to the two-dimensional continuity equation in which the

integratio_are performed for a sine-squared variation of total pressure and

a sine variation of angle across a blade wake. This approximation, which includes

wake blockage effects on the exit flow area, is valid within experimental error

if (i) the total pressure loss coefficient,_, is less than 0.i0, (2) the flow

angle variations from the mean exit flow angle are less than 15 deg, and (3) the

width of the wakes at the measuring station are less than the blade spacing. This

expression was derived using the methods prescribed in Ref. 2. Effective two-

dimensional flow was assumed when the average experimental dynamic pressure ratio

was within _0.05 of the value computed by the above expression using the average

measured exit flow angle.

The total pressure loss coefficient, _, is the nondimensionalized total

pressure loss across a blade wake averaged across the blade spacing and is

expressed by the formula

SPI-P 2_ t /"
dy

,,,= T o.j (2)

The experimental dynamic pressure ratio is expressed as

Pi - Pl
E

(3)
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APPENDIX I

(Contd.)

An expression developed in Ref. 7 to relate the total pressure loss coef-

ficient to the wake momentum thickness (8*) and wake shape factor (H) at the

downstream measuring station is given by

z cos #z cos Dz

3H_-I

8.)2 o-H 2 3i- -_- cosDz
(4)

which indicates the contributions by the cascade geometry terms: _, _i, _2'

and the aerodynamic terms: _*, H (the contribution of the expression within the

braces was stated in Ref. 7 to be very small). For the presentation of cascade

characteristics, the momentum thickness is ratioed to the blade spacing and the

total pressure loss coefficient expression is given by

cos_2 2 cos#2
t 2H 2 1

COS/_2 .

(_)

The momentum thickness ratio was calculated from the expression

r uy(v)v
where the limits of integration are the wake boundaries.

inclusion of the Bernoulli equation, becomes

I I dy
s s JS£y qz qz
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APPENDIX I

(Concluded)

In Ref. 6, it was stated that a factor to be used for wake thickness correl-

ations is the diffusion of blade surface velocities because of the contribution

of this diffusion to the wake shape. A diffusion factor (D) developed in Refo 6

is expressed for incompressible flow as

cos , ) cos ,O = I- COS _2 + 2_
(tan/R,- tan/3 2 ) (8)

The significance of this diffusion factor is restricted to the region of minimum

loss.
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APPENDIXII

List of Symbols

A

e

Cp

D

H

i

K

m

n

P

P

Pv

Ap

q

Re c

r

28

Flow area, sq in.

Hydrofoil chord length, in.

P l_ol - Pl
Pressure coefficient,

P)- p_

Diffusion factor, (I cosB) )+ cosB,
cos B2 zo-

(tan,8_ - tan/_z)

Boundary layer form factor, 8*/8*

Incidence angle, angle between inlet-flow direction and tangent

to meanline at leading edge deg, ( 2___)' i = /3_- ),°+ i =_z-

Cavitation index, Pl- Pv ' " " 2

Pi - Pl

Slope factor in deviation angle relation, m = (8 ° - 82)/¢

Slope factor in incidence angle relation, n = (i - i0) ¢

Total pressure, ib/sq in.

Static pressure, ib/sq in.

Vapor pressure, ib/sq in.

Static pressure difference, p2-Pl, ib/sq in.

Dynamic pressure, ib/sq in.

Reynolds number based on chord length, V c
V

Radius, in.

Blade spacing, in.



t

V

X

Y

T °

8

8°

e

V

p

Or

APPENDIX II

(Contd. )

Maximum profile thickness, in.

Velocity, ft/sec

Chordal station

Coordinate normal to axis, in.

Angle-of-attack, angle between inlet-flow direction and blade-

chord angle, deg

Flow angle, angle between flow direction and axial direction, deg

Blade chord angle, angle between blade chord and axial direction, deg

Wake full thickness

Deviation angle, angle between exit-flow direction and tangent to

blade mean camber line at trailing edge, deg

Boundary layer displacement thickness,f_Y (l- V-VVoo)dY

Turning angle, _l - _2' deg

Wake momentum-defect thickness J_Y I- _V__dy' . Vo

Kinematic viscosity, sq ft/sec

Density, slugs/cu ft

Solidity, ratio of chord to spacing

Camber angle, difference between tangent angles at leading and

trailing edges, deg

Total pressure loss coefficient

29



APPENDIX II

(Concluded)

Subscripts

E

_y
N

0

uy

1

2

2D

I

Experimental

Wake boundary from lower surface

Nominal

Free stream I

Wake boundary from upper surface

Station at cascade inlet

Station at cascade exit

Two-dimensional

Value for zero degree camber hydrofoil

3O

ili'



REFERENCES

1.

.

.

.

.

.

.

Lin, T. C.: Ducts for Accelerated Flow. ASME Proceedings of the Second

U. S. National Congress on Mechanics, June 1954.

Emery, J. C., L. J. Herrig, J. R. Erwin and A. R. Felix: Systematic Two-

Dimensional Cascade Tests of NACA 65-Series Compressor Blades at Low Speeds.

NACA Report 1368, 1958.

Erwin, J. R. and J. C. Emery: Effect of Tunnel Configuration and Testing

Technique on Cascade Performance. NACA Report 1016, 1951.

Johnsen, I. A, and R. 0. Bullock (Editors): Aerodynamic Design of Axial-

Flow Compressors. NASA Report SP-36, 1965.

Felix, A. R.: Summary of 65-Series Compressor-Blade Low-Speed Cascade

Data by Use of the Carpet-Plotting Technique. NACA Technical Note 3913,

February 1957.

Lieblein, S., F. C. Schwenk and R. L. Broderick: Diffusion Factor for

Estimating Losses and Limiting Blade Loadings in Axial-Flow Compressor

Blade Elements. NACA RM E53D01, 1953.

Lieblein, S. and W. H. Roudebush: Theoretical Loss Relations for Low-

Speed Two-Dimensional-Cascade Flow. NACA Report TN3662, March 1956.

31



TABLEI

Coordinates for Double Circular-Arc Profiles

CamberAngle 0 °(Deg) i0° 20°

Thickness

Ratio (%)

6% io% 6% 6% io¢

Wc uDDer surface (%)

Chordal

Station

i._ Chord)

0.0 0. I0 0 •i0 0. i0 O. i0 0

8.33 0.93 i. 53 i. 62 2.29 2

16.67 i. 67 2.80 2.92 4.14 5

25.00 2.23 3.77 3.94 5.56 7

33.33 2.67 4.43 4.65 6.57 8

41.67 2.90 4.87 5.09 7.18 9

50.00 3.00 5.00 5.23 7.38 9

58.33 2.90 4.87 5.09 7.18 9

66.67 2.67 4.43 4.65 6.57 8

75.00 2.23 3.77 3.94 5.56 7

83.33 i. 67 2.80 2.92 4.14 5

91.67 0.93 i. 53 i. 62 2.29 2

lO0. O0 O.lO O. i0 O. i0 O. i0 0

y/c lower surface !%)

-0.i0 -0 .I0 -0.i0

-0.93 -1.53 -0.23

-1.67 -2.80 -0.42

-2.23 -3.77 -0.58

-2.67 -4.43 - 0.68

-2.90 -4.87 -0.76

-3.00 -5.00 -0.77

-2.90 -4.87 -0.76

-2.67 -4.43 -0.68

-2.23 -3.77 -0.58

-1.67 -2.80 -0.42

-0.93 -1.53 -0.23

-0. i0 -0. i0 -0. i0

0.0

8.33

16.67

25.oo

33.33

41.67

5o.oo

58.33

66.67

75.00

83.33

91.67

lO0. O0

.i0

.94

.29

.09

•37

•12

.38

.12

•37

.09

.29

.94

.i0

-0. i0

0.42

0.76

i .03

1.22

1.33

i. 38

1.33

i .22

1.03

0.76

o.42

-0.I0

_0 .iO

-0.19

-o.35

-0.47

-o.55

-o.61

-0.62

-0.61

-o.55

-0.47

-o.35

-0.i9

-0 .i0
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Camber Angle

(Deg) 25___°

Thickness 6%

 atio(%)

Chordal

Station

Chord)

TABLE I

(Concluded)

30o
0

4o
0

45

6% lO% 6% lO% 6%

y/e upper surface (%)

0.0 O.lO 0.i0 0.i0 0.I0 0.I0 0.i0

8.33 2.64 3.00 3.67 3.77 4.48 4.15

16.67 4.76 5.41 6.58 6.74 7.95 7.41

25.00 6.40 7.25 8.80 9.01 10.58 9.87

33.33 7.55 8.55 10.35 10.58 12.40 11.59

41.67 8.24 9.33 11.27 11.54 13.49 12.61

50.00 8.47 9.58 11.58 11.84 13.84 12.95

58.33 8.24 9.33 11.27 11.54 13.49 12.61

66.67 7.55 8.55 10.35 10.58 12.40 11.59

75.00 6.40 7.25 8.80 9.01 10.58 9.87

83.33 4.76 5.41 6.58 6.74 7.95 7.41

91.67 2.64 3.00 3.67 3.77 4.48 4.15

ioo.oo o.io o.io O.lO o.io o.io o.io

(%)y/c lower surface

0.0 -0.I0 -0.i0 -0.I0 -0.i0 -0.i0 -0.i0

8.33 0"79 I.i0 0.48 1.80 1.17 2.15

16.67 1.41 2.00 0.88 3.26 2.12 3.89

25.00 1.89 2.69 1.18 4.40 2.87 5.23

33.33 2.20 3.19 1.40 5.19 3.40 6.19

41.67 2.40 3.48 1.54 5.68 3.72 6.76

50.00 2.47 3.58 1.58 5.84 3.82 6.95

58.33 2.40 3.48 1.54 5.68 3.72 6.76

66.67 2.20 3.19 1.40 5.19 3.40 6.19

75.00 1.89 2.69 1.18 4.40 2.87 5.23

83.33 1.41 2.00 0.88 3.26 2.12 3.89

91.67 0.79 i.I0 0.48 1.80 1.17 2.15

iO0.O0 -0.10 -0.i0 - 0.i0 -0.I0 -0.i0 -O.lO
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TABLE II

Index to Cascade Test Configurations

Inlet

Angle

Flow

(Deg)

Camber Thickness

Angle (Deg) Ratio (%) Solidity Fi_. No.

5o o 6 o.75 15

i. O0 16

i.5o 17

50 0 io o. 75 18

i.oo 19

i. 5o 2o

50 i0 6 O. 75 21

i. O0 22

1.5o 23

50 20 6 0.75 24

I .oo 25

i. 5o 26

50 20 I0 O. 75 27

i.oo 28

i. 50 29

50 30 6 O. 75 30

1.00 31

i. 50 32

50 40 6 O. 75 33

1.00 34

i.50 35

50 40 I0 0.75 36

1.00 37

1.5o 38

50 45 6 0.75 39

1.00 40

i. 50 4!

6o o 6 o.75 _2

i.OO 43

i. 50 44

60 O iO O. 75 45

i. OO 46

i. 50 47

60 io 6 o. T5 48

i.OO 49

1.50 50
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Inlet Flow

Angle (Deg)

6O

6o

6o

60

60

60

7o

YO

7o

7o

7o

70

7o

C amber

Angle (Deg)

20

20

3O

_0

4O

45

0

0

i0

2O

2O

25

3o

TABLE II

(contd.)

Thickness

Ratio (%)

6

i0

6

6

i0

6

6

i0

6

6

I0

6

6

Solidity

0.75

i .00

1.5o

o.75
1.00

1.5o

o.75
I. 00

i.5o

o.75
i .00

1.5o

o.75
1.00

i. 50

O.75
1.00

z.5o
o.75
1.00

1.5o
0.75
1.00

1.5o

o.75
i. O0

I. 50

O.75
i .00

1.5o

0.75

i. 00

1.5o
o.75
I. O0

1.5o
o.75
i .00

1.50

Fig.

51

52
53
54

55
56

57
58

59
60*

61-

62*

63

64

65
66*

67*

68*

69

7o

71
72

73
74

75
76

77

78

79

8o

81

82

83
84

85
86

87
88

89

No.
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TABLE II

(Conc lud ed)

Inlet

An_le

Flow

(De )
Camber

Angle (Deg)

Thickne ss

Ratio (%) Solidity Fig.

70 30 io 0.75 90

1.00 91

1.5o 92

75 0 6 0.75 93

i.oo 94

1.5o 95

75 0 I0 0.75 96

1.0o 97

1.5o 98

75 i0 6 0.75 99

1.00 i00

1.50 i01

75 20 6 0.75 i02

1.00 103

1.50 104

75 20 i0 0.75 105

I.OO io6

i.50 i07

75 25 6 0.75 IO8

1.00 109

i.5o ilO

No,

* Includes cascade characteristics of slotted hydrofoils
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Plenum

\

Porous wall 'Hydrofoil blade

Figure 4.- Porous sidewall assembly.

support
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(a) _=0,t/c=0.06

(b) (_= O, t/c = 0.10

(c) ¢ = 10, t/c = 0.06

(d) _-- 20 , t/c--0.06

(e) _-- 20, t/c =0.10

Figure 5.- Doublecircular-arcprofiles.

42



(f) _-- 25 , t/c -- 0.06

(g) _-- 30, t/¢ = 0.06

(h) _ = 30, t/¢ -- 0.10

(i) _ = 40, t/c = 0.06

(i) @-- 40, t/¢ = 0.10

(k) _ _ 45, t/c -- O.06

FiEure 5.- Concluded.
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Figure 6. - Location of static pressure instrumentation - suction and pressure surfaces.
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5O Figure 11.-Data acquisition system.
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Figure 113.- Cavitation on a cascade of double circular-arc hydrofoils.
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Figure 114.-Propagating cavitation on a cascade of double circular-arc hydrofoils.
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